

De-Risk by Design | The World's safest hydrogen storage

Company Presentation as of August 22, 2024

Who we are

Our Shareholder Langley Holdings plc

Langley Holdings plc is a diverse, globally operating engineering Group headquartered in the United Kingdom. GKN Hydrogen is part of Langley 's Power Solutions Division.

3 Principal Divisions

Manufacturing Sites

90+ Subsidiaries €1.2bn Revenues

5,000

Anthony Langley, Chairman & CEO, Langley Holdings plc:

"The acquisition of GKN Hydrogen underscores Langley Holdings' strategic focus on sustainable energy solutions and commitment to a greener future".

Power Solutions

Print Technologies

Other Industrials

Source: Langley Holdings plc - Annual Report 2023

Who we are

Spin off from GKN Powder Metallurgy World #1

> Agile standalone Business since Aug 2022

Pioneer in Safe Storage of Green Hydrogen

- Metal Hydride Intellectual Property
- Secure supply chain from leading powder metal producer.
- GKN Hydrogen's Technical Know-How
- Digital integration capability

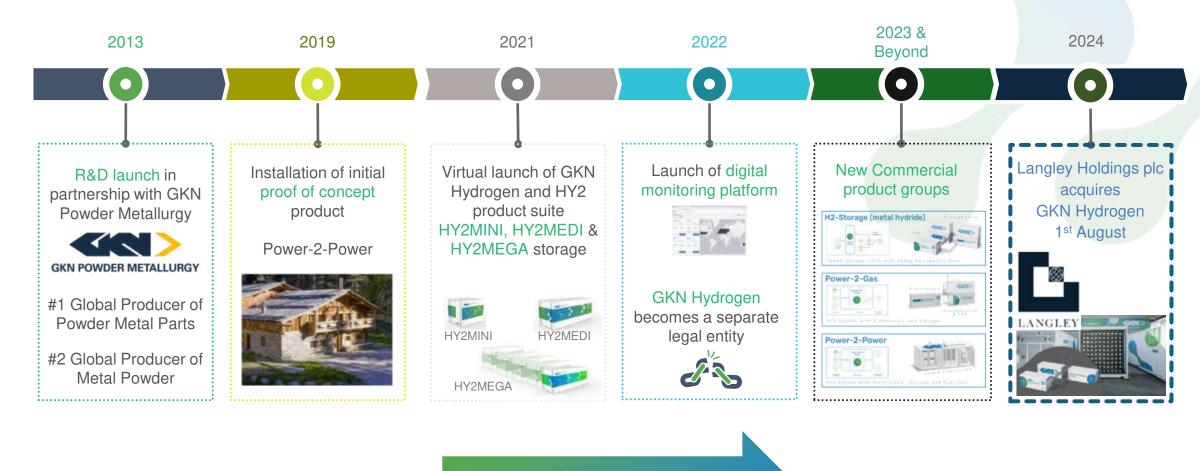
GKN Hydrogen operates in 3 locations

- Pfalzen, ITA (System Eng. Ops & Digital)
- Bonn, Radevormwald, GER (Commercial, R&D)
- Carlsbad, US (Commercial & Appl. Eng.)

Markets served;

• EU, US, AUS

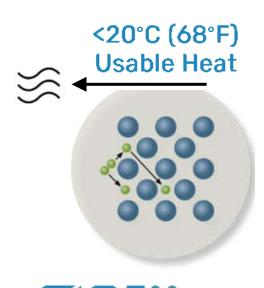
Business led by

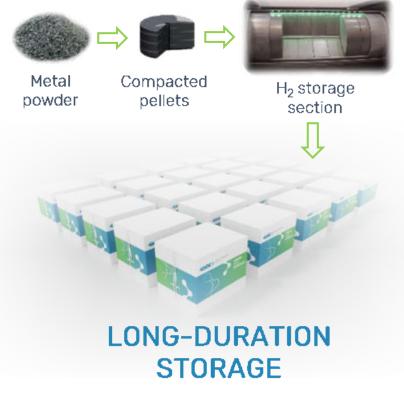

Gottfried Rier CTO & MD Italy, Germany and the US

Jim Petrecky CCO & MD US

Hydrogen Timeline - From R&D to Industrial Scale

Launch of GKN HYDROGEN

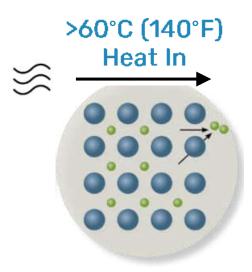

Metal Hydride - How it works



Metal Hydride Storage = How it works

Hydrogen Charge

- H₂ gas is fed to the metal alloy at pressure up to 40 bar
- Alloy reacts with hydrogen, creating a metal hydride and releases heat



- Stored without losses indefinitely until needed
- ~96% chemically bonded/ solid and safe, only 4% is gaseous H2

Hydrogen Discharge

- Metal hydride is heated
- H₂ is released safely

GREEN. SAFE. COMPACT.

Metal Hydride by GKN = The safest Hydrogen Storage

All-in-one solution for zero-emission power supply.

Solid-state hydrogen storage provides safety through design.

15x smaller size than 40bar hydrogen gas tanks.

Low Pressure <40 bar

Low temperature <70 °C

No compressor needed

Long Life-time >25 years

99% capacity after 5,000 cycles

Safety behaviour of H2 charged Metal Hydrid (FeTi base)

Water

Blistering (H2) as soon as in contact with H20.

Oxidation of MH, exothermic reaction - minimal temperature increase of <5°C detected.

→ No critical reaction of the active MH material with water.

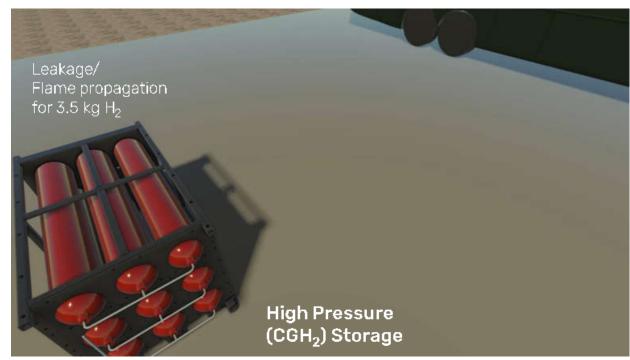
Fire

After multiple firings with a propane burner - a flame is visible indicating that contained organic material is burning off.

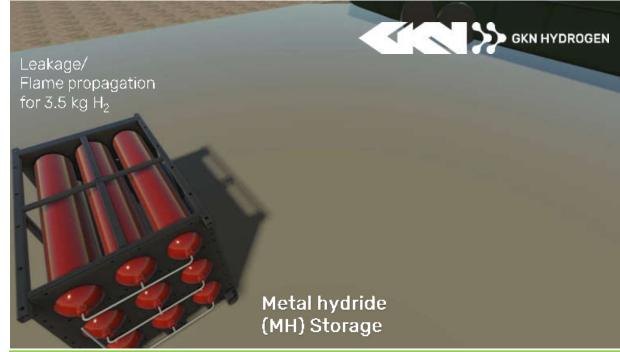
No self-advancing flame.

→ No critical reaction of active MH material in contact with an open flame.

Air


Scenario only possible when tank is unloaded.

No reaction visible when active MH material meets air. Only the release of hydrogen can be measured.


→ No critical reaction of the active MH material in the air.

Flame propagation in case of damaged H2 storage

High pressure Hydrogen storage vs. Metal hydride hydrogen storage (GKN Hydrogen)

3.5 kg H2 stored in a 700bar high pressure storage

3.5 kg H2 stored in a 35 bar Metal Hydride storage

→ 20 times less flame energy

What we offer

What we offer

SCALED UP TO MW

by modular engineering design

METAL HYDRIDE STORAGE

Hydrogen Storage Iron-Titanium Alloy

Energy Storage

250 kg per 20' container 8.325 MWh chem energy

- Storage
- · Thermal Mgmt
- Safeties
- · Controls
- · Balance of plant

H2 Release Temp

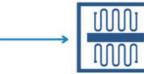
60 - 90 dea C

Operating Pressure

0.5bar(g) to 40bar(g) max 10 bar(g) nominal over discharge

-850 kg H2 per 12h

Electrolyzer



Energy Storage

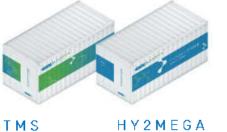
(or Multiple tons)

33.3 MWh chemical

1,000 kg H2 @ 35 bar

Fuel Cell 1 MW

~750 kg H2 per 12h


Industrial Scale Hydrogen Storage

Industrial Scale Hydrogen Storage

HY2MEGA

TMS HY2MEGA (optional) storage unit

Dimensions / Weight

Container size: 6m x 2.5m x 2.6m

Weight: 32,000 kg

Key Specifications

Hydrogen Storage Capacity

250 kg H₂/ Unit Units can be clustered / stacked to Multiple tons of hydrogen

Transportable

By truck and train

Pressure Range

40bar(g) to 0.5bar(g) 10bar(g) continous delivery pressure feasible

Nominal H₂ flow

60kg H₂ per hour per unit

Peak H₂ flow

Max. 100kg H₂ per unit (for 20min)

Output Voltages

EU 120V / 230V / 400V – 50Hz NA 120V / 240V / 480V – 60Hz

Hydrogen purity requirement

> 99.999% < -70°C dew point

Electrolysis, Fuel cell or CHP upon customer request / EPC support placeable

Containerized Plug & Play Systems

Power-2-Gas

Power-2-Power

Power-2-Gas Systems | Technical Data

HY2 Power-2-Gas System

NEW - available start of 2024

Dimensions

20foot container 40 foot container

or as integrated and modular multi-container design

Key Specifications

Energy Storage Capacity

1MWh up to several 100MWh 30kg up to several tons of H2

Electrolyser

20kg up to tons of H2 per 24h 24kW up to several MW power

Nominal H2 flow

7.2kg up to tons H2 per hour

Peak H2 flow

12kg up to several tons H2 (for 30min)

Thermal management (TMS)

Standard: Customer supplies cold <15°C and hot water >65°C

Option: On-board autarch TMS system for cold and hot energy need

As All-in-One container solution

1x 20foot container

- up to 48 kW electrolysis (= 20 kg H2 per 24h)
- up to 75 kg H2 storage
- up to 18 kg/h nominal H2 flow

1x 40foot container

- up to 96 kW electrolysis (= 40 kg H2 per 24h)
- up to 150 kg H2 storage
- up to 36 kg/h nominal H2 flow

As integrated modular multi-container approach

Modular multi-container solution

- from 120 kW up to several MW electrolysis (= 50 kg to several tons of H2 per 24h)
- · from 250 kg to several tons of H2 storage capacity
- · up to several tons/h nominal H2 flow

Power-2-Power Systems | Technical Data

HY2MEDI

Dimensions / Weight

6 m x 2.5m x 2.6m / 13,000 - 23,000kg

Key Specifications

Energy Storage Capacity

0.5 - 2 MWh electrical 30 - 120kg H2 @ max. 40 bar

Nominal Fuel Cell Load

EU 120V / 230V / 400V - 50Hz NA 120V / 240V / 480V - 60Hz

Electrolyser

Up to 10kg hydrogen per 24h Up to 24 kW power

Peak Load

19kW (15 min every 12h)

Power During Outage

7kW up to 285h / 14kW up to 142h

HY2 System 2.0

NEW - available 2024

Dimensions / Weight

12 m x 2.5m x 2.6m / 20,000 - 32,000kg

Key Specifications

Energy Storage Capacity

0.6 - 2.5 MWh electrical Up to 150kg H2 @ max. 40 bar

Nominal Fuel Cell Load

Up to 48 kW

Output Voltages

EU 120V / 230V / 400V - 50Hz NA 120V / 240V / 480V - 60Hz

Peak Load

Electrolyser

76 kW (15 min every 12h)

Up to 96 kW power

Up to 40kg hydrogen per 24h

Power During Outage

24kW up to 104h 48kW up to 52h

HY2 System 2.0

NEW - available 2024

Dimensions / Weight

Modular multi-container solution/ utility performance scale

Energy Storage Capacity

4.2MWh up to several 100MWh 250kg up to several tons of H2

Electrolyser

up to several tons H2 per 24h 120 kW up to several MW

Nominal Fuel Cell Load

120kW up to MW-class

Peak Load

148kW (short term) up to MW

Output Voltages

EU 120V / 230V / 400V - 50Hz NA 120V / 240V / 480V - 60Hz

Power During Outage

> 48h ongoing, depending on storage size & loads

Digital Access

Enable Customers to Digitize their Storage Ecosystem

HY2Connect app and digital platform for remote control and monitoring of system operation and integration with other energy management control systems

Adaptive Control System

Continuous control strategy optimisation based on production forecast and demand analysis

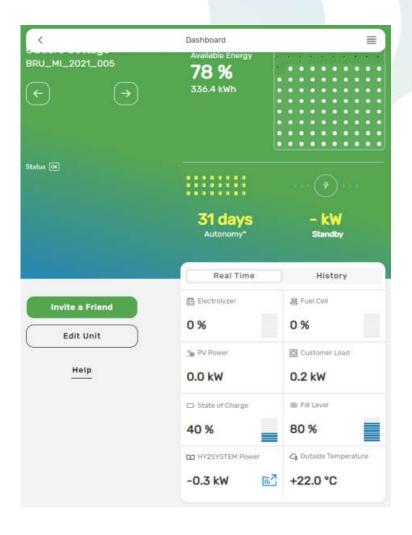
Value Reports

Performance monitoring, usage summary, environmental data - Storage as a Service

Measurement and Verification

Artificial intelligence & machine learning techniques for performance guarantees – Storage as a Service

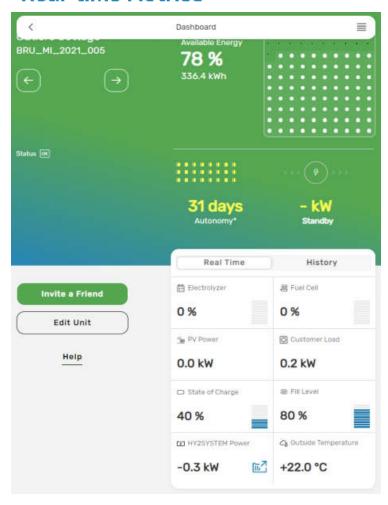
Digital Cockpit

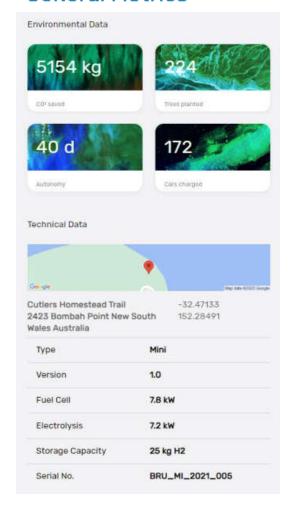

Fleet Management, Monitoring and Alerting

Advanced Analytics

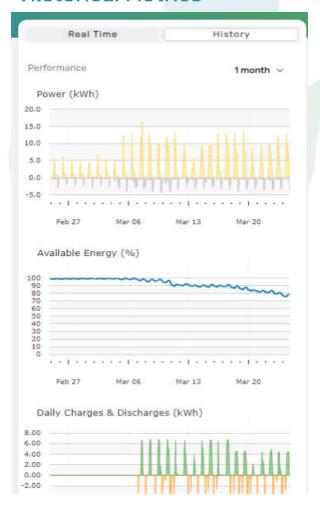
System efficiency optimisation, error pattern recognition and anomaly detection

Digital Twin Simulation

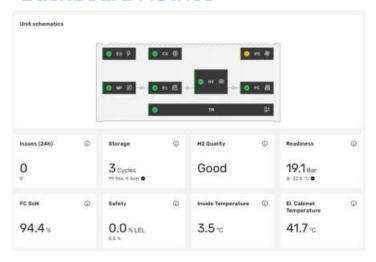

Replicates behavior of system for various demand/production profiles over long time periods



HY2CONNECT Web App - Visualization


Real-time Metrics

General Metrics


Historical Metrics

DIGITAL PLATFORM - Visualization

Dashboard Metrics

Charts Metrics

Forecast & Nowcast Metrics

Project Experiences

More than 25 Global Installations

Myall Lake / N-S-Wales

0.42 MWh / 25 kg H₂

Mt Holly / Arkansas

P-2-P / Micro Grid 0.42 MWh / 25 kg H₂

Carlsbad / CA

0.42 MWh / 25 kg H₂

Phelan Mojave Desert / CA

0.42 MWh / 25 kg H₂

Boulder / CO

MH Storage / Micro Grid 16.6 MWh / 500 kg H₂

Carlsbad / CA

P-2-P / Mobile Demo 0.50 MWh / 30 kg H₂

Prague, Commercial Hotel

P-2-P / Micro Grid 0.50 MWh / 30 kg H₂

Bonn, Plug-in E-Charging

P-2-P / Auxiliary

 $0.33 \, \text{MWh} / 20 \, \text{kg H}_2$

Passau, Commercial Building

P-2-P and CHP

 $0.81 \, \text{MWh} / 50 \, \text{kg} \, \text{H}_2$

Hanau, R&D Lab

P-2-P and P-2-6

2.0 MWh / 120 kg H₂

Braunschweig, R&D Lab

MH Storage / H_2 Back up 16.6 MWh / 500 kg H_2

Customers served

siz energieplus

Bruneck, Manufacturing Site

MH Storage

9.5 MWh / 286 kg H₂

P-2-P / IT Back up

0.42 MWh / 25 kg H₂

Bruneck, Bio-Farm

P-2-P / Axiliary Power

2 MWh / 120 kg H₂

Residential Cottage, Prettau

P-2-P / Off-Grid

0.17 MWh / 10 kg H₂

Residential Building, Kiens

P-2-P / Rebalancing

0.27 MWh / 16 kg H₂

Mountain Hut, Sterzing

P-2-P / Off-Grid

 $0.90 \text{ MWh} / 60 \text{ kg H}_2$

Ratsberg, Telecom Tower

P-2-P / Back up 96 hrs

1.5 MWh / 90 kg H₂

Test Vessel, Naples

P-2-P / Martime 0.70 MWh / 40 kg H₂

Brittnau, Resid. Building

P-2-P / Inhouse Salutior

 $0.50 \text{ MWh} / 30 \text{ kg H}_2$

Zurich, Appartment Building

P-2-P / Auxiliary Power

 $2.0 \text{ MWh} / 120 \text{ kg H}_2$

Eich, Residential Building

P-2-P / Auxiliary Powe 0.42 MWh / 25 kg H₂

Spital/Commercial Building

P-2-P + CHP / Micro Grid 2.0 MWh / 120 kg H₂

Balsicas, Greenhouse

P-2-P / Auxiliary Power

0.20 MWh / 12 kg H₂

Murcia, University

P-2-P / Rebalancin

 $0.20 \text{ MWh} / 12 \text{ kg H}_2$

HY2MEGA Storage Installation

Power 2 Power-System, NREL - Colorado/ USA

Application: Micro-Grid I Utility scale

System: HY2MEGA

17MWh

500kg H₂

1MW

1.25MW

Stored Energy

2x HY2MEGA Storage GKN

Nominal Power Fuel Cell

Electrolyzer

- Development of second generation of HY2MEGA
- 2x HY2MEGA added to the mega-watt class hydrogen assets at the facility on NREL's Campus, CO
- Validate and simulate grid scale use-cases
- Delivered Nov. 2023
- Installation in Q1/2024

HY2MEGA Storage Installation

Power 2 Gas-System, H2 terminal SIZ-TU Braunschweig

siz energieplus

Application: Fuel Cell test center

System: HY2MEGA

17MWh

Stored Energy

500kg H2

2x HY2MEGA Storage GKN

1.0MW

Electrolyzer Customer

- Integration of 2x HY2MEGA and 1x TMS in the local micro grid
- Validate of fuel cells on test riggs with H₂ from HY2MEGA
- Delivered 12-2023
- Site installation H1-2024

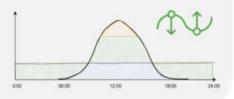
Use of renewables in industry

Industry: high demand for methane → high CO2 emissions

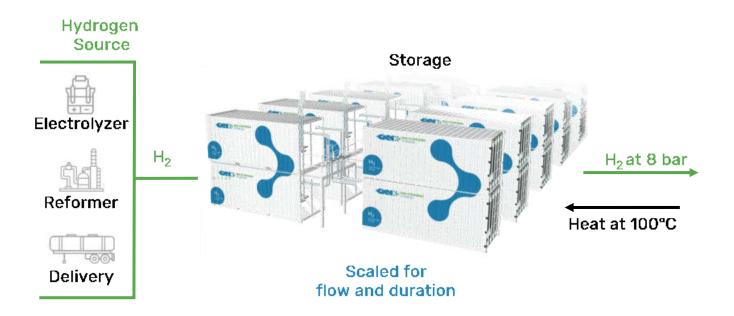
Solution: replacement of CH4 by H2 and the safest method of storage at low pressures (max. 40 bar)

USPs: Planning the entire system integration to ensure

the safe replacement of CH4 by ${\rm H2}$

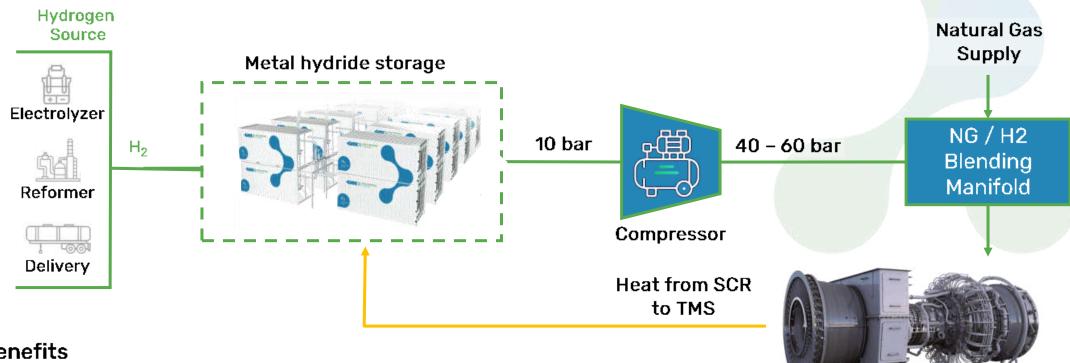

Scalability: A key solution (H2 mixing) in industry to

reduce CO2 emissions



- Burning/Furnaces: steel, ceramic, glass
- Feedstock & Hydrogen Gas direct use
- Blending / Mixing
- eFuels
- Energy Load Management

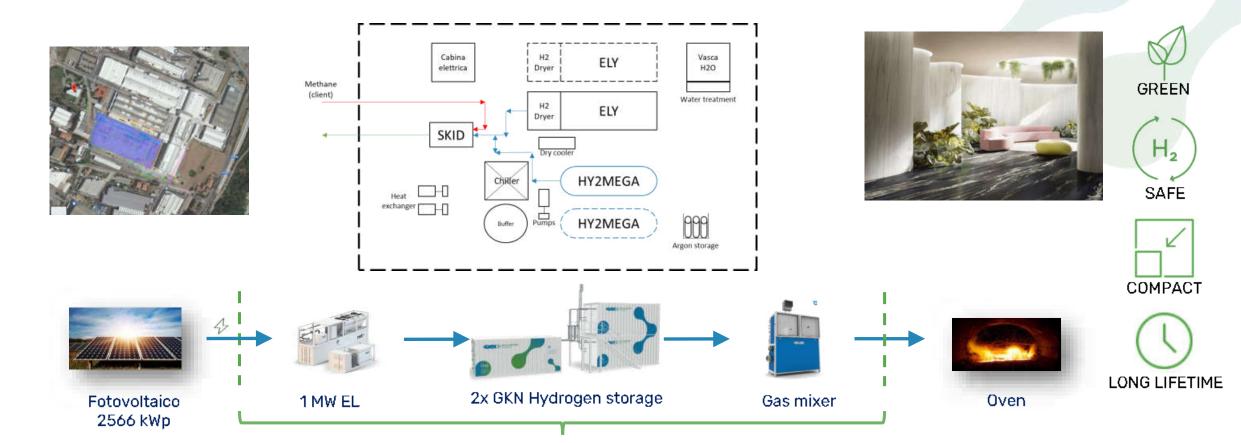
Focus Use Case | H2 Engines



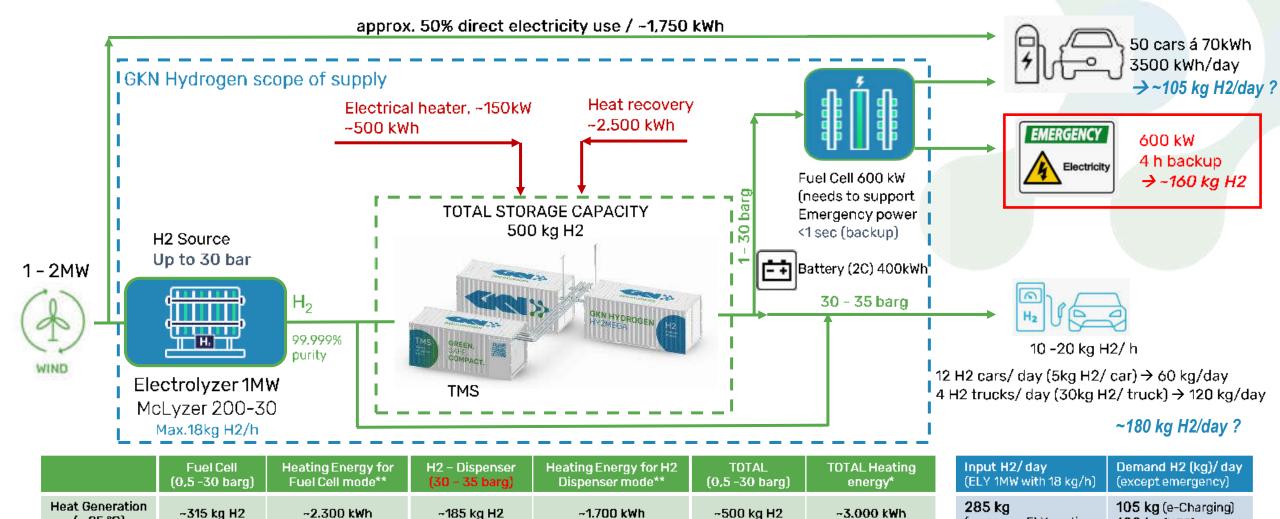
Use waste heat to:

- maximize efficiency and
- · minimize infrastructure
- Uniquely fit for hydrogen-ready internal combustion engines. The ferrous-titanium metal hydride stores 96% of hydrogen as a metal, the safest form of hydrogen storage. The remaining 4% gas is sent to the engine instantly for power needs. The 100°C bi-product heat from the engine breaks the hydride bonds to sustain hydrogen flow.
- Safety, simplicity and efficiency. Storage sends 8 bar hydrogen to the engine. This eliminates high CapEx, energy, and
 maintenance associated with compressors and pumps used in other hydrogen storage solutions.

Use Case | Peaker Plant


MH Benefits

- STABILITY: H2 production and off-taking can operate independently
- UPTIME: Continued electrolizer operation with downstream failures
- SMALL FOOTPRINT: Fully containerized & stackable; smaller setbacks
- SCALE: Increased storage capacity without compressor
- OPEX: Low costs due to operation without compressor


Italian Tile Manufacturer | Industrial Direct Use

Market: Industrial Application: H2-Blending Function: H2 direct use System: MEGA

Hybrid Green Mobility H2 Hub

(~95 °C)

180 kg (HRS)

(means an ELY runtime

of 16h/day at max. performance)

HY2 System Certification

GREEN. SAFE. COMPACT.

Hydrogen Timeline - From R&D to Industrial Scale

Management System

No.01764/0

No.05000/0

ISO 9001:2015 ISO 45001:2018 ISO 14001:2015

Products / Applications

US

Field Evaluation Report mit "TÜV Süd Amerika"

ANSI/CSA FC 1-2014 / IEC 62282-3-100

NFPA 79

NFPA 70

ASME B31.3

ASME B31.12

NFPA 2

UL 508A

NEC 500

Fuel Cell Technologies Electrical Standard National Electrical Code

Process Piping Hydrogen Piping

Hydrogen Technology Code Industrial Control Panels

Hazardous (Classified) Locations

EU

CE-Kennzeichnung nach 2014/68/EU - Druckgeräterichtlinie

2014/35/EE Niederspannungsrichtlinie

EN IEC 62282-3-100 Brennstoffzellentechnologien
 EN 13480 Brennstoffzellentechnologien

EN 60204-1 Elektrische Ausrüstung von Maschinen

EN 61508-1 Funktionale Sicherheit

EN 301489-52 EMV

EN 62305-2 Blitzschutz Risikomanagement
 EN 60079 Explosionsgefährdete Bereiche

Appendix

